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1. Historical Remarks on HOPF Bifurcation in Aircraft Dynamics

Modern qualitative theory of differential equations originated

with the work of Poincare, who essentially had arrived at the

phenomenon which is presently called Hopf bifurcation. Poincare's

work was later developed by Androuov and Pontryagin [11-[311 and Hopf

[15).

More recently, experience with the aircraft at high angles of

attack shows loss of stability for some critical values of parameter

(e.g., angle of attack, or the velocity). This phenomenon was

interpreted by R. Mehra et al. (25] as the Hopf bifurcation; this

interpretation was supported by numerical study for the aircraft H

model.

The work of Mehra et al. led naturally to the question as to the

effect of control decoupling feedback on the (undesirable) Hopf

bifurcation; in particular, does such a feedback eliminate the

bifurcation? Among other things, this question will be answered in

this report.
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2. Historical Remarks on Control Decoupling via Feedback

The problem of control decoupling via feedback together with the

closely related problems of disturbance decoupling and invariance has

arisen in many engineering applications, and particularly in

connection with the aircraft control problem. Since Rozenoer's

initial work [251, the subject of control decoupling via feedback has

been extensively developed, and a reasonably large body of literature

currently exists. Some papers which have been important milestones

are Wonham and Horse [33], Tokamaru and Iwai [321, Majumdar and

Chaudhury [171, Isidori et al. [16], Hischorn [141, and Byrnes and

Krener [7]. In addition to this theoretical work, several

applications to problems of aircraft control have been studied

including Singh and Schy [271 and work by G. Meyer [20] on the design

of an autopilot system for the Bell UH-IH helicopter.

The basic idea behind the theory of control decoupling is quite

simple: Suppose there is given a nonlinear control system of the form

x f(x) + Ulg(x) + u2g2(x)

y h (x) (i-1,2)
i i

We wish to consider modifications of the system dynamics using feedback

controls u- a(x) + B(x)v

- f(x) + v g(x) + v g2(x) (2.1)

112 2
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Y h(x) (ihW,2) (2.2)

where

- 2
f f-f + E cx g]

j=l

2

The decoupling problem is to find a and such that v t controls yi and

only yi. (That is, we want v1 to have no influence on the output Y2

and vice-versa).

Techniques for finding a and 6 in the case in which f and the

h is are linear and the gi's are independent of x are well known and

may be found in Wonham [331. For nonlinear systems, considerably less

is known and although the beginnings of the theory date back to 1962,

many aspects remain to be understood.

In 1962, L. Rozonoer [251 obtained conditions necessary for

invariance (i.e. independence of the output upon the input) in

nonlinear systems, by using variational method, similar to the

-. Pontryagin's optimality principle.

a'..
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H. Tokamaru and Z. Ivai [321, and A. Majumdar and A. Chaudry

[171, independently have applied the variational method used by

Rozonoer to obtain necessary conditions for non-interacting control,

for linear time-variant systems (1968) and for nonlinear systems

%, (1971).

A concrete design for control decoupling feedback for the

S"'automatic piloting of a mine hunter boat was given by E. Daclin [ 81.

All theoretical work mentioned above neglected the existence of

constraints on controls in virtually every real-life situation (e.g.,

a limit on rudder deflections, acceleration rates, etc. The effects

of such constraints have been studied by D. Hanson and F. Stengel

[121, particularly for systems with two degrees of freedom. Further

development of their analysis seems to be of considerable interest.

A different approach to the problem was used by R. Su, G. Meyer

and L. Hunt [311, who used nonlinear transformations to reduce the

nonlinear problem to the linear one, which can be treated by standard

methods, as in Wonham [33]. The main drawback here is that it is not

*" generally possible to carry out this type of linearization; there are

-* both algebraic and topological obstructions which are essentially the

same ones that are encountered if one were to try to do nonlinear

.' decoupling directly.

S .°
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An important application of control decoupling theory to the

problem of aircraft dynamics was given by S. Singh and A. Schy, [27].

These authors derive a feedback for a simplified aircraft model in

which certain aerodynamic forces had been ignored. One of the aims of

this report is to produce a control decoupling feedback for a full

blown model - the so-called aircraft H model. In Section 3.1 we will

give what we believe to be the simplest derivation of a decoupling

feedback control law together with a simple geometrical explanation of

the method.

. . %
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3. A Simpler 3rd Order Model

This section consists of three parts. In the first, we

investigate the underlying geometry of control decoupling feedback,

with the aim of gaining intuition about the problem of interest - the

control of certain model of aircraft dynamics, the so called "aircraft

H" model.

Second, we give a brief outline of Poincare's theory of normal

forms, which is used to study the Hopf bifurcation. We follow the

work of Poincare, Hopf, Andronov et al. and Arnold.

Third, we apply the above two ideas to study a model with three

degrees of freedom, to illustrate the effect of control decoupling

" "" upon the Hopf bifurcation.

Using the theory of normal forms our goal is to reduce our system

to a simpler form; the subsequent application of control decoupling

feedback will illustrate the stabilizing (or destabilizing) effect of

control decoupling upon the Hopf bifurcation. We shall also derive a

criterion for determination of stability of the decoupled systems.

°-.
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3.1 Derivation and Geometry of a Control Decoupling Feedback

Here we provide a straight forward derivation of a control

decoupling feedback for the system

x - F(x) + G(x)u

y- lHx (3.1.1)

As we have remarked in Section 2, the objective is to modify the

dynamics using state feedback in such a way that the i-th control

input influences only the i-th output.

Differentiating the output and using the feedback u- a+av (with a(x),

a(x) to be found) we obtain

y i - - HF + HGu -(HF+HGc) + HGev

Our aim is to find a and a such that v1 controls yi and only y "

Such a choice is determined by setting y-Av (A is an arbitrary

constant diagonal matrix), i.e. HF+HGa=iO, HGaA.

We obtain:

S-a - (HG)-IH F

(3.1.2)

;'?:": a =  (G)-'A

* the desired feedback is: u--(HG)-HF+(HG)-Av.

7
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N" a -. a 72- a . . - -6 - -;1 .-17.*

(Ran H) F-G(HG)'I F F

G(G)- HF

,a.. I

(Ran H) (HG) Av

Figure This figure shows schematically the geometry of control

decoupling feedback in dimensions 3 and higher

We briefly indicate the geometrical meaning of the terms in

(3.1.2). The term -(HG)-IHF in the feedback law has the effect of

annihilating the "horizontal" component of the vector field F, i.e.
_'s-.-

the component along Ran H.

The term "horizontal" is suggested by the aircraft H model, where

H is the orthogonal projection onto a 3-dimensional subspace spanned

by coordinate vectors. The effect of the part (HG)-IA in the feedback

law is to align directions of input with directions of output, i.e. to

take a vector u-e parallel to the i-th axis in U-space into a vector
i

HG(HG) - 1 Au-Ae in the same direction.

71 8
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3.2 Poincare's Theory of Normal Forms

One of the most powerful tools in studying dynamical system is

the method of normal forms, which Poincare introduced in his

dissertation. This method will be briefly described, and we refer the

interested reader to Arnold (1983) for further details. The

development of normal forms for nonlinear control systems can provide

considerable insight into problems of synthesizing stabilizing

o- feedback control laws. In general, by a "normal form" for a control

system we mean a canonical form with respect to local diffeomorphic

changes of state coordinates near an equilibrium for the force-free

"drift" term. In terms of our general model, this drift term is given

by the vector field F(x). The main idea behind Poincare's theory of

normal forms is to reduce a system

x - Ax + higher order terms (x cR ) (3.2.1)

to as simple a form as possible by means of transformations

x-T(z)- z + h.o.t. Ideally, one would like to linearize (3.2.1), but

the existence of such a linearizing transformation depends upon

certain non-resonance conditions. That is, there may be Diophantine

relations between the eigenvalues of A which prevent one from

eliminating some higher order terms.

"O*. More precisely, a collection of eigenvalues .=(l,...,j ) of the

nxn matrix A is called resonant, if there is a relationship of the

form o -(m,v), where m-(m1 ,....m) with m 0, E mk 2. Here (.,.)• ". S

@O1 denotes the usual dot product. Such a relationship is called a

9
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- resonance. For example, 1 + V2-0 is a resonance, or rather, it

implies the resonance ul=2l + P2 , and more generally, ul-(k+l)tl+

S2 2 1 + (k+l)l 2k-1,2,.... Let x1 ,..., xn be the coordinates

in the eigenbasis e..., e of the matrix A. Equivalently, we can

perform a preliminary linear transformation diagonalizing A; then e

will have coordinates

e = col (0,..,...,...,), and A diag (il'''''1n)"
s S

Therefore, there is no loss of generality in assuming that A is

diagonal (we omit the case of Jordan blocks, which can be treated

without difficulty, too).

" m mn

Consider a vector monomial xme s, where x =x1  ...x is a

scalar monomial, and e is an eigenvector of A. It is called resonant

if vs-(m,w), m > 2.

Now, the main theorem (of Poincare and Dulac) asserts that the

. •  system

x Ax + ... ,

can be reduced by a (formal) change of variables x-y + ... to the form

-"y Ay + w(y)

O where all the vector monomials in the series w are resonant. We give

a short proof of this theorem in Appendix 1.

10
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We illustrate Poincare-Dulac's theorem by applying it to the

proof of the existence of a Hopf bifurcation.

Consider the systems (cf. Section 3.3)

-. Ax + Wy +

(3.2.2)

y - WX + Xy +...

. where X is a parameter near 0. When A=O, we have a resonance, + i
2

- 0 ( + iw), and therefore for A-0 we cannot kill the resonant

terms of third, fifth, etc. order. Therefore, we do not try to kill

them at all, even for X-0 - an attempt to do so would lead to the

discontinuous dependence of the vector field on the parameter A.

Eliminating the second and fourth order terms by a change of

variables, we can reduce (3.2.2) to the form

Xx + wy + (x + +Yl++ 0I * + 1 ax + a2) 1 5~
.. (3.2.3)

* 2-x + Ayl + (-6x, + ax )(x + Y) + 05

This reduction also justifies our seemingly specific choice of

the example in Section 3.3.

To eludicate the geometrical meaning of this analysis, we refer

to Figure 3.2-1.

tVV.
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)X>0 X-0 X<o

*(Degenerate) bifurcation (at X0O) of the linear system

x-Xx + wy

y -wx + Xy'

0is expo entially

0 exponentially stable 0 is stable, non-exponentially unstable, periodic orbit
X<O X=0 has bifurcated off 0.

Hopf Bifurcation (at X=0) of the nonlinear system

2 2
x=Xx + wy + (ax + y) Cx +y)

22'O
ynwX + Xy +(-x + y) (x 2+y)2

Figure 3.2-1

12
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2 2
Introducing the distance r - (x + y) from the origin, we

obtain the the following ODE for r:
r2

- r + ar + 03,

where 0 refers to the terms of order r and higher.
3

Ignoring 03, we obtain the equation

r - ( + r)r (r > 0)

for which r 0 . 0 is always a stationary point (which corresponds to

the equilibrium solution of (3.2.2)); another stationary point

r l - , (if - <0) corresponds to a periodic solution of theae a

truncated system (3.2.3)). Actually, the presence of 05 in (3.2.3)

will not destroy this solution but will only perturb it slightly, as

can be easily shown. This periodic solution is close to a circle of

radius 4- Va ; it bifurcates off the origin as x crosses 0. This is

exactly the Hopf bifurcation.

During almost a century of its existence, Poincare's method has

been used by many researchers, including Birkhoff, Hopf, Moser and

others, in conjunction with their work on problems arising in such

applications as electrical engineering and classical and celestial

mechanics, to name but a few.

*13
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3.3 An Illustrative Example of Hopf Bifurcation in a Control System

It is known that the aircraft H model of section 4 enters an

oscillatory regime as angle of attack becomes large. In Mehra, Kessel

and Carroll (1978) it was demonstrated that this instability is due to

Hopf bifurcation. Our eventual goal is to determine the possibility

of stabilizing this system via decoupling feedback. (We construct

such a feedback in section 4, by applying the method given in section

3.1 above).

Before attempting this derivation, we would like to understand

the geometry of the problem; to that end, instead of the aircraft

model, as a first step we consider a simpler three-dimensional system

with two controls, which retains the essential instability of the

aircraft model, but is easier to visualize geometrically.

The role of equilibrium angle of attack (or equivalently elevator

angle 6e) will be played by a certain bifurcation parameter X in our

example. In analogy with the angle of attack in the aircraft model,

as X increases, our system will pass from stable steady state to an

oscillatory regime.

We will then introduce a control decoupling feedback into our

system and will determine its effect upon stability. The importance

of considering this example is that is suggests the direction of

analysis for the actual aircraft model.

14
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Thus, we consider a family of systems

x = F(x,A,a) + G(x)u, (3.3.1)

y - lix (3.3.2)
" wlt x 2  R2 1 0

with , u R and H - 0 1 being the matrix of projection of the
0 0

vector (x 1 ,x 2 ,x 3 ) on the (x ,x2 )-plane.

The parameter X will be roughly analogous to the equilibrium

angle-of-attack, while a will characterize the geometry of the system

and will be referred to later.

One of our major techniques for analyzing stabilization schemes

for (3.3.1)-(3.3.2) is to put this control system into a normal form,

by a change of coordinates in the state variables which is locally

defined in a neighborhood of an equilibrium point. Note that such a

change of coordinates does not change the time trajectories (y(t),

u(t)) of (3.3.1)-(3.3.2), but rather enables us to define a feedback

strategy for (3.3.1) in the context of the simpler, normal form.

We first describe the free motion of (3.3.1) in a geometric

fashion. To be specific, consider the third order control system

= + Wcx + Wsx - x (x 2 + (cx + sx )2)
2 3 11 2 3

+g u +g u
11 1 12 2

2 = 
- wcx + (Xc2 - B2 ) x + (X+l)csx - c(cx + sx )(x2+(cx +sx )2)2 1 2 3 2 3 1 2 3

+ g u +g u (3.3.3)
21 1 22 2

15
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x- + (,+)csx + (As 2  c x e(cx +

3- 2  x3 )(x+(CX+SX 3) )i.-.,.-,]3 - " X

+ g31U1 + 2

where G(x)-(gij(x)) is assumed to be of full rank in a neighborhood of

0, w is a fixed real quantity, c-cosc, snsina, and X and a are

parameters. Consider the free motion of this system (with controls

-- .ulu'u 2
" 0)

2 2
Xl -x 1 + ~c 2 +s 3- 1(1+ (c 2+ sx3))

-2_ 2 2 2
x2 ' (cxl + a ) x2 + (X+1)csx3 - c(cx2 + sx3)(x1+(cx 2+sx3) )

- s 1 + (X+1)csx 2 + (s2_ 2 2 2)
3 = - usx 2 c ) x 3 - s(cx 2 + sx3 )(xl+(cx 2+sx 3 )

(3.3.4)

Standard results (see, for example Marsden and McCracken, [ 1) show

that as X (a real parameter) increases from negative values to

positive ones, a limit cycle for (3.3.4) appears. (See figure 3.3-1)

Indeed, if we fix the parameter a, this system represents a normal

form for third order families of systems admitting a Hopf bifurcation

The limit cycle is confined to an invariant two dimensional manifold

Wc (which for X-0 is called the center manifold). The other invariant

manifold, Ws , is stable for all X, and it intersects Wc transverally.

, .-,
Note that there is a plane through the origin perpendicular to Ws, and

the motion of the system restricted to this plane is given by

-x+w x(x2+y2)

(:'".) \-wx + y - y(x2+y2), where x,y are coordinates in that plane.

, We point out that, although this picture may seem to be very specific,

16
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~it accurately represents what actually occurs in the aircraft model,

except that in the latter dimWS-5 instead of I and dim (Ws)LM3 instead

of 2.

According to section 3.1, the feedback

u = - (HGY 1lH F(x,X,L) + (H G)-1 A v

decouples the closed loop system. The resulting system is

x2 Xv

x3  - F3 - B1 F - B2 F2 + B1 Xl I + 12 2 v2

10 FI

where G(H G)- / 0 F F2 and Bl' B2 are functions of x.

Li~'1 i 2 F3

More explicitly, we have

C' . x 2 v2

-Xv
2 2 2

" 3 A 1 + Rx2 Cx3 N(xi, x2, x3) + B1 X1 vI + 2 X2 v 2 ,

'- where

.O.':A = -ws - +  W2c

'B - (AH)cs -2 2

'-".... C - (O 2 - c2) - BlAS - B X+)cs,
* .1 2

and N includes cubic terms.

18
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Now, to determine stability of this system, we keep xl-x 2=0 (by

setting v1-v2-O end making initial values of xl,x 2 vanish); the

resulting system for x is x 3=C(X,a)x 3+N(0,0,x 3); it is stable

precisely when C(x,a)<O.

.e

Thus, we obtain a stability criterion: If C(Oa)<O, then Hopf

bifurcation is "stabilized" by the control feedback (3), i.e. as long

as x ,x2 remain small, so does x

Explicitly, this criterion is:

2;: -:-c - 1 s -S 2 Wcs < 0

The importance of this criterion is that it points to the fact that

either situation can occur: the feedback may either stabilize or

destablilize the bifurcation. For instance if we have 6i=.2==1, the

criterion becomes

cos2 a + sin a + cosa sins > 0;

for some angles a(e.g. cpO) this inequality holds, and for others

(e.g. a--- it doesn't. In each specific case one would have to

make calculations to determine the sign of C.

When this approach is generalized to the aircraft model, we

obtain a similar criterion; instead of the sign of the coefficient C,

we have to check stability of a certain 4x4 matrix (corresponding to

the uncontrolled variables). The details of this are sketched in

, ", .19
19..............o.
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If

section 4 where the state dynamics for xl, x and x is decoupled, but1 , 4 5

the state dynamics for x 2, x 3 , x and x 7 is further complicated.

Flight experience with advanced fighters such as F-14 shows that

certain control designs e.g. aileron-rudder interconnect, can produce

problems in other flight regimes. We believe further research along

the lines we have indicated will lead to analytical methods for

solving such problems by examining the global stability properties of

given feedback laws.

- .
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4. Application to the Aircraft H Model

In this section we apply the technique described in section 3-1

above to the problem of control decoupling in the full aircraft H

model and give the method to determine stability of the resulting

decoupled system.

The seven degree of freedom aircraft model (Hecker and Oprisiu,

1976) has the form:

i a+ X Ao6a+ Zq + Zr +Z aAa + Z r~ct + Z p - iqr+ t 6a + P 6r
,6a q r Ba ra p I 6a6

q - maAa + mqq + 12Pr + m e 6 - m.p

Sr na + naba Aa6a + nrr + npp + n pAxa- 3pq + n 6a + n6r 6r

a q - p6 + z Aa + z 6e + (q/V) (cos e cos - cos 0o ) (4.1)

. y 8 + p(sin(a + Aa) - r cos ao +y 6a+y 6  6r + (g/V) cos 0 sin

4) = p + q tan 0 sin 4 + r tan 0 cos 4)

0 q cos 4)- r sin

where m m +MaZ , m -m +m, m6 =m6 +m.Z 6 e, and where the symbols are
ax =x a xa q= q 6ecx+%~

as follows:

x,y,z principal axes of aircraft

I , I , I moments of inertia about principal axes (kg/m2

x y z.... i = Ci -I)/r ~1

1 z y x

i (I -I )/I non-dimensional inertia coefficients
2 z x y

=.,'O:t 3 - (I -I )/I

3 y x z

21
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.'- p,q,r Angular velocity components along roll, pitch and yaw

axes (principal axes) of aircraft (rad/sec)

V velocity of aircraft's center of mass (m/sec)

' g gravitational acceleration (m/sec )

a angle of attack (rad)

a angle of sideslip (rad)

a pitch angle (rad)

Sangle of bank (rad)

6a, 6r, 6e aileron, rudder, and elevator deflection angles (rad)

rolling moment per I (1/sec )

2
m pitching moment per I (1/sec)

y

n yawing moment per I (1/sec )
z

y side force over (aircraft mass times speed) (1/sec)

z aerodynamic force along principal axis z over mass times

speed (1/sec)

a.,,,p,q,r,6a,6r,6e as subscripts denote partial derivatives with respect to

the respective quantity, i.e.

2
y. M. -2,

Y == -a
f mi  = a

a 6a 36a a d 6aa ia6a

bank angle command dt

0.f

'22
@* 22
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We change the notation to a more uniform one by setting

(x ,X 2 ,x 3 ,x 4 ,x 5 ,x 6 ,x 7 ), p1 29 etc. (the

index of each coefficient corresponds to the index of the variable (or

variables) which it multiplies).

Our system can be rewritten as

- F(x) + G(x)u , y - Hx (4.2)

where

I Yl a1  0 a2  1 0 0 0 0 0 0

x -.- y , G 0 a 0 H- 0 0 0 1 0 0 0

Ya 4  0 a5  0 0 0 0 1 0 0Q')3 ~ -~4 00010

a 0 a5
7 8

70 a6  0

a7  0 a8

0 0 0

0 0 0

the explicit form of F (x) is evident from (4.1), and a are

constants, except for a and a4:

a -i 6a x4 + a2  6r
a .-+ a3  na4

a3. m6e "e n6a 4 6a

a a n 6 z
5 6 6 6r

a7 aY6a 8 Y6r

.4.
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The procedure described in section 3-1 leads to the following

results (we omit the tedious calculations).

-The functions czWx and O(x) in the control decoupling feedback

U ca(x)+8(x)v are as follows:

O 0h 2 100 (x Ih 10 x

Ni (x) (H, A - ( 0x 00 h 0 (43
h3 2 03 o

( h 0 0 / \X h 0 X h5

where A aa-aa and hi~a h2--a a h=-aa +a a h--a
16 2'67 1 68' 2 26' 3 2 7 1 8 4= a

h -a a
5 1 6

cz,(x) - -(HfG) -R F - A- h (4.4)

The feedback u-ocix)+ (x)v results in the following system:

x 0 Yv

x2 F1-AF 4  A1 2 2

x3  F3 AF- 3T5  2 11 333

d x =0 +
4 '2

F6 0

x7F 7  0
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where A A- (a
2 468 567

1A -A7(a -a )
3 156 246

with a1 3 8 standing for a1 a3a8 , etc. Local stability of the

.'. uncontrolled part of the system depends on the eigenvalues of the

matrix of the linearization of the dynamical system restricted to the

4-dimensional subspace given by x 0 0 x - 2.50 (the leveled
1.x.?O x47x4

steady flight angle of attack). Explicitly, this dynamical system has

the following form:

2 FI- AIF4 + A Xv2

:3 3F-A2F-A3F5 + A2 XI v+ A3 3 v3

-F
6 6

7 F7

Here the components F of the vectorfield are as follows:
i

F M5x5 Z2x2 +  3 x3 +45Ax4x5 -Z34x3Ax4+ ZXl - iI x2X3

F 3 5 n5x5+ n3x3+ n1x + n 14 4 3xlx2

F = x2 - Xx+z Ax+& (cos x cosx - cos x')
4 2 1 5 4 4 V 7 6 7

F = YX + x sin x4 - x cos x0 + YL cos x sin x
F5 - 5x5 +x 1  4 3 x4 V 7 6

F6 x + x tan x7 sin x6 + x3 tan x cos x

F7 =x 2 cos x6  -x 3 sin x6

The resulting nonlinear system becomes, after setting xl=x 5 =O,

-x x4 (so that Ax '0):

2 ( 2 - A1 ) x 2 + Z x, - i x 2x 1 - cos xf cos x 7 + A1  co

25
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- A x + (n -AZ+ A cosx)x +A ix X 3g cox sin x3 2 22 3 2 33 4 3 2 12 3 V 7 6

x -x tan x sin x - x tan x cosax
2 7 6 3 7 6

17 2 5C 6 - 3 6

To determine stability of the equilibrium position x 2-x 3-x -=0,

X -xo-2.5*, we linearize the system near this point.
7 7

The resulting linear system is

- - ~-A), + sin

' A2l '2 + 3 A VE3 V A C
~-- 2A~ +( 3 - 2 3 + A3 cos x~) 3  - o 7 ~6

Z6- tan x0

~~7 C3

Our aim is to determine the eigenvalues of this system. After a

tedious calculation, we can rewrite the system as follows:

-- 174.9 + .126 + .276
'2 237

S -3.38 E - 5438 F + 201
3 2 '26

C .0436C

* The eigenvalues of the matrix of this system are computed to be:

-5438, x - 174.9, -- 1.6, x-0.0016;
2 3 4

thus the system has a very weak instability, which in practice should

* amount to a neutral equilibrium.

A% %%
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Our analysis shows, therefore, that the decoupling of controls in

the specific case under consideration does not alter weak instability

present in a horizontal steady flight in any significant way.

.-. 2

: 27

.* %.V , Z'...'Z 

%.:~ 

:-



--

-.

5. References

5,.

[11 Andronov A.A. and Pontryagin L.S., Robust Systems, Dokl. Akad.

Nauk SSSR, 14 (1937), 247-251

[21 Andronov, Vitt and Khaykin, "Theory of Oscillations", Pergamon

Press, New York (1966).

[3] Andronov A.A., Leontovich E.A., Gordon I.1., and Mayer, A.G.,
• .

"Oualitative Theory of Second Order Dynamical Systems" and "Theory of

Bifurcations of Dynamical Systems in the Plane", Halstead Press, New

York (1973).

[4 Arnold, V.I., (1983) Geometrical Theory of Ordinary Differential

Equations, Springer-Verlag, (to appear).

[5) Bishop, R.L., and Crittenden, R.T., (1964) Geometry of Manifolds,

Academic Press, New York.

[6 Brockett, R.W., (1982) "Asymptotic Stability and Feedback

*' Stabilization," Progress in Mathematics, Birkhauser Boston (to

appear).

. '[71 Byrnes, C. I. and Krener, A. J. (1982) "On the Existence of

28
S--,".

-S-.. ,. . . . . . ,. , ° % ... ' - . - . -- -, . '. ,{ .. '.+ .. .". . - . .• . .. .-. . . + .. , .. - . '. , , . % -



• .' h "

--.

. Globally Defined (f,g) -Invariant Distributions," (In preparation)

- [81 Daclin, E. , "Application of M4ultivariable Predictive Control Techniques
. to a Deminer Boat", Aug. Proceed. JACC, 1980.

,. . [9] Falb, P. L., and Wolovich, W. A., (1967) "Decoupling in Design and

Synthesis of Mtultivariables Control Systems,"IE rn.o uoai

! Control, AC-12, pp. 651-659.

%" ,%[101 Freund, E., (1975) "The Structure of Decoupled Nonlinear

-, , Systems," Int. J. of Control, V. 21, pp. 443-450.

V -.

[ [81] Dacin, E.adOrsuC,(94 "Applicatsion ofMutvaibl Peici e nRollTcnqe

-"• C~~oapDener Broat"m, Auog. roceed JAepce, 1980. o ,egao

-:::'. [12] Hanson, .D. and Stengel, R.F., "Effects of Displacement and

Rate Saturation on Statistically Unstable Aircraft," AIAA Control

Conf., 1981.

[13] Hazewnkel, , (1980) "A Partial Survey of the Uses of Algebraic

Geometry in Systems and Control Theory," Proc. 1979 NASA-NATO Conf. on

ouoLinear S"stem Theory, Harvard Univ.

[141 Harschorn, R. ,(1981) "(A,B)-Invar"ant Distributions and
S...29

-' -""29



i.S ____o__otroan

Disturbance Decoupling of Nonlinear Systems," SIAM J. of Control and

Opt., V. 19, pp. 1-19.

[151 Hopf, E., Abzeigung einer periodischen Losung von Elner

Stationaren Losung eines Differential systems, Ber. Math-Phys

Sachsische Academie der Wissenschaften Leiprig 94 (1942) 1-22.

[16] Isidori, A., Krener, A.J., Gori-Giorgi, C., and Monaco, S.,(1981)

"Nonlinear Decoupling via Feedback: A Differential Geometric

Approach," IEEE Trans. Aut. Control, v. AC-26, pp. 331-345.

[171 Majuindar, A.K., and Choudry, A.K., "On the Decoupling of

Nonlinear Systems", Int. J. Control, 1972, Vol. 16, No. 4, 705-718.

[181 Marsden, J.E., and McCracken, M., (1976) The Hopf Bifurcation and

Its Applications, Applied Mathematical Sciences 19, Springer-Verlag,

New York.

1191 Mehra, R.K., W.C. Kessel, J.V. Carroll, "Global Stability and

Control Analysis of Aircraft at High Angles of Attack", ONR Technical

Report Contract # N00014-76-C-0780, June 30, 1977.

[20] Meyer, G., "The Design of Exact Nonlinear Model Followers"

i... 3
.'o.

- .
_ , _°_.



1ri IT.°A-

(211 Meyer, G. and Cicolani, L., (1975) "A Formal Structure for

Advanced Automatic Flight Control Systems," NASA Technical Note, NASA

TN D-7940.

[221 Milnor, J. W. and Stasheff, J.D., (1974) Characteristic Classes,

.. :

Annals of Mathematics Studies, vol. 76, Princeton University Press.

[231 Nijmeijer, H., and van der Schaft, A.J., (1982) "Controlled

Invariance for Nonlinear Systems: Two Worked Examples," (submitted).

(241 Phillips, W.H., (1948) "Effects of Steady Rolling on Longitudinal

and Directional Stability," NACA Technical Note, NACA TN 1627.

[251 Rozonser, L.I., "A Variational Approach to the Problem of

Invariance", I and IT. Automaika i telemekhanika, Vol. 24, No. 6

(1963) and Vol. 24, No. 7 (1963).

(261 Scientific Systems, Inc., R.K. Mehra and J.V. Carroll, (1978)

"Global Stability and Control Analysis of Aircraft at High

Angles-of-Attack," Technical Report ONR-CR215-24-2 prepared for the

- Office of Naval Research.

[271 Singh, S.N., and Schy, A.A., (1978) "Nonlinear Decoupled Control

.. Sthesis for Maneuvering Aircraft," Proc. IEEE Conf. on Decision and

31



!..

V.i.

- Control, pp. 360-370.

[281 Singh, S.N., and Schy, A.A., (1980) "Output Feedback Nonlinear

--.' Decoupled Control Synthesis and Observer Design for Maneuvering

Aircraft," Int. J. Control, v. 31, no. 4,pp. 781-806.

[291 Sinha, P. K. (1977) "State Feedback Decoupling of Nonlinear

Systems," IEEE Trans. on Automatic Control, AC-22, pp. 487-489.

[301 Steenrod, N, (1951) The Topology of Fibre Bundles, Princeton

University Press.

[311 Su, R., Meyer, G., Hunt, L., "Global Transformations of Nonlinear
"." Systems", IEEE Trans. on Auto. Control, Vol. AC-29, 1(19S3), pp. 24-30.

[321 Tokumaru, H., and Iwai, Z.,(1972) "Non-interacting Control of

Nonlinear Multivariable Systems," Int. J. Control, v. 16, no. 5,

pp. 945-958.

[331 Wonham, W. M. and Morse, A. S., (1970), "Decoupling and Pole

Assignment in Linear Multivariable Systems: a Geometric Approach,"

SIAN J. Control, v. 8, pp. 1-18.

1341 Willems, J.C. and Commalt, C., (1981) "Disturbance Decoupling by

32.9' L.e--------%~*' .**



S - - t - - S - S S 45.,. . b

.5%
* .p.

5,..

Measurement Feedback vith Stability and Pole Placement," SIAM J.
- . ~.5

Control and Opt., v. 19, pp. 490-504.

* .5,

*5%~5*
-'.5..

~~,5~

.5.

* .5.

4.

33
is
4..

.5.

- ;*~ -~ - > ~ ~ :. :. :. ;.:K.:;.:K.:'-c-:~-j;KKQ-~<.~. *.



'. - A

A- -s

i, " Appendix I

rHere we prove he theorem of Poincare and Dulac which is restated

Proofhere for the reader's convenienceo

Theorem The system

i.. "..;. =Ax+ v(x) , A = diag( U, ... n)(Al)

- %. can be reduced by a formal change of variables x-y+•. to the form

9- Ay + w(y)
where all the vector monomials ym c

5S

resonant (for definitions see section 3.2).

-" :Proof. Performing the change of variables x=y + h(y) in (Al)

":-'"-"(here lowest degree in h(y) is > 2), we obtain:

--# Ay + Ah(y) - h'(y) Ay + v(y) + h.o.t. (A2)

~S
comprising the series v(y); in order to eliminate these terms we must

:':-:::-solve for h the equation

h'(y) Ay-Ah(y) = v (y), (A3)
k

where v (y) retains only the monomials from v(y) of degree k.
k
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Our aim is, therefore, to study the properties of the operator

(Lh)(y) - h'(y)Ay-Ah(y)

mapping the set of polynomial vectorfields h(y) of degree k into

itself. The complete information about L is contained in the

following

Lemma. The eigenvalues of L are the vectorfields of the form

ym ; the corresponding eigenvalues are
S s

.N Postponing for a moment the proof of the lemma, we finish the

proof of the theorem. Using the lemma, we can eliminate all

nonresonant monomials of degree k in the right hand side of (A3), by

the proper choice of the terms of degree k in h(y). Similarly, we can

.. *~kill all nonresonant terms of degree (k+1) without affecting any terms

of lower degree - indeed, the transformation x~y+h (y) does not
k+l

affect terms of degree <k, as follows from (A2).

Inductive application of this argument proves the theorem.

Proof of the lemma.

L(ymZ (ym,) Ay -A(ym t)
S S S

035

£ ospoin fr m men th rofo he1maw ins h
I n M

. .~~~ .ro o th tere . .sn th leta wecneimnt

noreonntmola of dereks h ih adsd f(3,b

.- , ~~~~~~ ~~ Ph prprcocYftetrso ereki ~) iialw a

;.~~~~~ 0, _il all norsnn nem ofdge kl)wtotafctn n e

== f lwe dere - ndedthetrnsfrmtio x~~h~l~) oes3o

:'""" ~~~ ~ ~ ~ ~ .afec .e o. dere .k .s .olw rm(2
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